IEEE Copyright Notice

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Verification of the effectiveness of classes using
intermediate content for transitioning from a visual-
to a text-based programming language

Katsuyuki Umezawa
Dept. of Informatics
Shonan Institute of Technology
Kanagawa, Japan
umezawa@info.shonan-it.ac.jp

Abstract—In recent years, visual programming languages
(VPLs), such as Scratch, have been widely used by program-
ming beginners. Subsequently, learners often transition to text-
based programming languages (TPLs), such as Java. However,
a seamless transition between these two types of programming
languages has not yet been effectively established. In this study,
we experimentally demonstrated that students who utilized our
proposed intermediate music content between learning VPL and
TPL exhibited enhanced comprehension of the TPL. Our results
indicate that students who engaged with intermediate content
while transitioning from VPL to TPL during their high school
years performed better in their first-year college programming
classes compared to those who did not use such content.

Index Terms—programming languages, visual-based lan-
guages, text-based languages, learning analysis

I. INTRODUCTION

We initiated a research project aimed at establishing a
methodology for transitioning from a visual programming
language (VPL) to a text-based programming language (TPL).
This study focuses on examining and prototyping educational
content that leverages the advantages of both VPL and TPL
learning to bridge the gap between the two. The evaluation
was conducted through empirical experiments. This report
forms part of the project and investigates whether high school
students who took classes using our proposed intermediate
content showed improvement in their grades in university
programming-related classes.

II. PREVIOUS WORK

Several studies have been conducted on the relationship
between VPLs and TPLs. Robinson [1] investigated the tran-
sition from a VPL, such as Scratch, to a TPL. Téth et al.
[2] highlighted the existence of a gap between VPL and TPL
learning.

Our aim is to establish a seamless transition method and
experimentally demonstrate that learning with our proposed
intermediate content enhances comprehension of TPL [3].
Additionally, we assessed our proposed intermediate content
through a questionnaire and found that it possesses inter-
mediate features between VPL and TPL [4]. The biometric

Makoto Nakazawa
Dept. of Industrial Information Sci.
Junior College of Aizu
Fukushima, Japan
nakazawa@jc.u-aizu.ac.jp

Shigeichi Hirasawa
Research Institute for Sci. and Eng.
Waseda University
Tokyo, Japan
hira@waseda.jp

information of learners were evaluated during the VPL and
TPL sessions [5] [6].

III. WHAT IS INTERMEDIATE CONTENT?

A. Hypothesis

The proposed intermediate content should be simple, requir-
ing no additional knowledge specific to TPL, provide quick
feedback (immediate results), be resistant to grammatical
errors, and facilitate the easy location of logical errors.

B. Realization

As content embodying the aforementioned characteristics,
we developed educational material for creating music in
JavaScript using JSFiddle [7]. As illustrated in Fig. 1, JSFiddle
is a web-based integrated development environment that al-
lows users to code in JavaScript and view execution results on
a single screen via a web browser. By incorporating a library
(Beeplay) into JSFiddle, music creation becomes straight-
forward. Although JSFiddle is not a visual-based language,
we anticipated that content developed with the previously
outlined features would yield the positive effects discussed
in subsequent sections.

C. Expected effects

The use of the “play” method eliminates the need for
memorizing many reserved words or grammar rules, enabling
immediate sound production and swift verification of results.
Identifying logical errors is straightforward as the compiler
does not explicitly indicate an error; instead, it produces
a sound different from the expected one. Music inherently
includes repetitive structures, which correspond to loops in
programming (for statements) and conditional branches (if
statements). Additionally, the structure that repeats every mea-
sure can be defined as a function in programming, demonstrat-
ing a natural alignment between music and programming.

(& Edit fiddle - JSFiddle - Code P! x ar

& C @ jsfiddle.net/umekatsu/8bhdf407/3 G B e % & %0 Q

Q D> Run @®save X Fork © Setasbase [Collaborate <> Embed

HTMLY
umekatsu
¥ <

Fiddle meta

id="play">Play</
>

Untitled fiddle JavaScript + No-Library (pure JS) ¥

song beeplay({b

D;

® rrivate fiddle
.play('c4’, 1);

.play('D4’, 1);

s venr
roups .play('E4’, 1);

Resources URL cdnjs

Async requests

Fig. 1. JSFiddle screen

IV. EVALUATION
A. Evaluation method

We conducted 12 sessions of 90 min each over a four-
month period for third-year high school students aiming for
admission to the Department of Informatics. These sessions
focused on coding from music scores using basic programming
concepts such as loops, conditional branching, and functions,
employing our proposed intermediate content. We refer to
students who took these classes as “experienced” and those
who did not as “inexperienced.” Our analysis concentrates
on “Fundamentals of Programming,” a mandatory first-year
college course designed to teach the basics of Java and C
languages, including variables, arrays, conditional branching,
and loops. We examined whether there is a disparity in the
mean grades between these two groups in this course. Given
that the entrance examination methods for these groups differ,
indicating a variance in overall academic understanding, we
adjusted the programming course scores by the overall grade
point average (GPA) of specialized subjects.

B. Correction by GPA

In Japan, GPA calculation methods are not standardized, and
evaluation criteria vary by university. At our institution, GPA
values are 1, 2, 3, and 4 for grades C (60 points or higher), B
(70 points or higher), A (80 points or higher), and S (90 points
or higher), respectively. If the average GPA of all first-year
students is x and that of students with intermediate content
experience is y, then the “Fundamentals of Programming”
score p of inexperienced students is calculated using formula
(1) and adjusted to p'.

10y + 55

/

= —_— 1
P =P X0, 55 M
C. Test results

Due to the non-normal distribution of the scores, a ¢-test was
not applicable. Instead, we conducted a Wilcoxon rank sum

test, a nonparametric method, to compare the average scores
in “Fundamentals of Programming.” The results, displayed
in Table I, indicate that the experienced students, who used
our intermediate content during high school, significantly
outperformed the inexperienced students.

TABLE I
WILCOXON TEST RESULTS

inexperienced students | experienced students

number of students 265 32
87.686
0.00585** (<0.01)

average value 90.156

p-value

V. CONCLUSION

This study demonstrated that students who engaged with
intermediate content in their third year of high school achieved
higher grades in programming classes during their first year of
college. Future studies will analyze data from students enrolled
in the academic year 2024 and beyond.

ACKNOWLEDGMENTS

Part of the work reported here was carried out as a part
of the research project “Research on e-learning for next-
generation” of the Waseda Research Institute for Science
and Engineering, Waseda University. Part of this work was
supported by JSPS KAKENHI Grant Numbers JP24K06348,
JP22HO01055, JP21K 18535, and JP20K03082. Research lead-
ing to this paper was partially supported by a grant from the
research working group “ICT and Education” of JASMIN.

REFERENCES

[1] W. Robinson, “From scratch to patch: Easing the blockstext transition,”
In Proceedings of the 11th Workshop in Primary and Secondary
Computing Education (ACM), pp. 96-99, 2016. [Online]. Available:
https://doi.org/10.1145/2978249.2978265

[2] T. Téth and G. Lovdszovd, “Mediation of knowledge transfer in
the transition from visual to textual programming,” Informatics
in Education, vol. 20, pp. 489-511, 2021. [Online]. Available:
https://doi.org/10.15388/infedu.2021.20

[3] K. Umezawa, K. Ishida, M. Nakazawa, and S. Hirasawa, “Proposal
and evaluation of intermediate content for the transition from visual
to text-based programming languages,” Proceedings of the 56th Hawaii
International Conference on System Sciences (HICSS 2023), pp. 83-92,
2023.

[4] K. Umezawa, M. Nakazawa, and S. Hirasawa, “A proposal for intermedi-
ate content: Transition from visual to text-based languages,” Proceeding
of the World Conference on Computers in Education (WCCE2022), p. 1,
2022.

[5] K. Umezawa, M. Nakazawa, and S. Hirasawa, “Comparison of biomet-
ric information during learning of visual- and text-based programming
languages,” Proceedings of the 8th International STEM Education Con-
ference (iISTEM-Ed 2023), pp. 1-5, 2023.

[6] K.Umezawa, T. Koshikawa, M. Nakazawa, and S. Hirasawa, “Differential
analysis of heart rate, facial expressions and brain wave during learning
of visual- and text-based languages,” Proceedings of the VIII IEEE World
Engineering Education Conference (EDUNINE2024), 2024.

[7] “Jsfiddle,” https://jsfiddle.net/, accessed: 22 April 2024.

